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ABSTRACT

This study applies Fourier filtering to a combination of rainfall estimates from TRMM and forecasts from

the CFSv2. The combined data are filtered for low-frequency (LF, $120 days) variability, the MJO, and

convectively coupled equatorial waves. The filtering provides insight into the sources of skill for the CFSv2.

The LF filter, which encapsulates persistent anomalies generally corresponding with SSTs, has the largest

contribution to forecast skill beyond week 2. Variability within the equatorial Pacific is dominated by its

response to ENSO, such that both the unfiltered and the LF-filtered forecasts are skillful over the Pacific

through the entire 45-day CFSv2 forecast. In fact, the LF forecasts in that region are more skillful than the

unfiltered forecasts or any combination of the filters. Verifying filtered against unfiltered observations shows

that subseasonal variability has very little opportunity to contribute to skill over the equatorial Pacific. Any

subseasonal variability produced by the model is actually detracting from the skill there. The MJO primarily

contributes to CFSv2 skill over the Indian Ocean, particularly during March–May and MJO phases 2–5.

However, the model misses opportunities for the MJO to contribute to skill in other regions. Convectively

coupled equatorial Rossby waves contribute to skill over the Indian Ocean during December–February and

the Atlantic Ocean during September–November. Convectively coupledKelvin waves show limited potential

skill for predicting weekly averaged rainfall anomalies since they explain a relatively small percent of the

observed variability.

1. Introduction

Subseasonal-to-seasonal (S2S) forecasting remains

one of the most challenging but potentially beneficial

horizons in atmospheric science. These forecasts are

largely driven by the divergent circulations associated

with tropical convection, which can broadly be catego-

rized in terms of their temporal periods and/or zonal

wavelengths. The MJO in particular has a period of 30–

60 days and is an ideal target for these types of forecasts

(Zhang 2013). Higher-frequency modes like convectively

coupled Kelvin waves may have shorter-term effects

at any given location, but they circumnavigate the

globe over the course of a month on S2S time scales

(Straub et al. 2006; Ventrice et al. 2012b,a; Ventrice

and Thorncroft 2013; Schreck 2015, 2016). Similarly,

while ENSO has a longer period than the MJO, its

transitions can fall squarely in the S2S window and it

modulates the activity of higher-frequency modes

(Kessler 2001). Model skill for predicting S2S tropical

variability has improved over recent years, but it still

fails to leverage the full predictive potential of these

tropical forcings (Gottschalck et al. 2010, 2013; Hamill

and Kiladis 2014; Oliver and Thompson 2015).

Wheeler and Weickmann (2001) developed a method

for filtering proxies for convection like OLR in near–

real time to identify the MJO and convectively coupled

equatorial waves (CCEWs). Fourier filtering breaks

down at end points, which poses a challenge for real-

time applications. Wheeler and Weickmann overcame

this obstacle by padding the observed OLR data with

climatology. The resulting filtered anomalies extrapolatedCorresponding author: Carl J. Schreck III, carl_schreck@ncsu.edu
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the current state of the MJO and CCEWs with skillful

forecasts out to 15–20 days for the MJO.

Schreck (2013) extended the Wheeler–Weickmann

(Wheeler and Weickmann 2001) method to support

forecast operations during the Dynamics of the MJO

(DYNAMO) field campaign (Yoneyama et al. 2013;

Gottschalck et al. 2013) by padding the observations

with 45-day forecasts from CFSv2. This combination

should be more skillful than the Wheeler–Weickmann

method because the model forecasts are generally more

skillful than climatology.

Janiga et al. (2018) showed that this method provides a

valuable way to evaluate the ability of the model to

simulate tropical variability and determine the sources of

predictive skill. Compared with other metrics like the

Wheeler–Hendon Real-time Multivariate MJO (RMM;

Wheeler and Hendon 2004) index, Fourier filtering is

better at identifying regional variations in skill associated

with theMJO and CCEWs. Janiga et al. (2018) evaluated

control member forecasts of OLR and zonal winds at 850

and 200hPa from the Navy Earth System Prediction

Capability (ESPC), the ECMWF, and the CFSv2 models

during boreal summer 1999–2015. Overall, the ECMWF

model had the smallest biases in MJO and CCEW ac-

tivity. Navy ESPC had a bias toward overamplifying the

MJO and CCEWs. The CFSv2 was generally the oppo-

site; it underestimated the amplitude of the MJO and

convectively coupled Kelvin waves.

One of the biggest contributions of Janiga et al.

(2018) was identifying the primary sources of skill

within the model. For example, the low-frequency (LF;

.100 days) filter had a lower mean absolute error

(MAE) than the unfiltered forecasts for all three

models beyond 1. Adding the MJO-filtered anomalies

to the LF-filtered anomalies substantially improved the

anomaly correlation coefficient (ACC) for week 1 with

decreasing benefits for subsequent weeks. Meanwhile,

equatorial Rossby (ER) waves only improved the ACC

in week 1, and other CCEWs made no significant

contribution to the skill. Taken together, these results

suggest that models derive much of their skill from

simply maintaining the LF state with the MJO con-

tributing to some skill in weeks 1–2. Meanwhile, the

higher-frequency variability actually detracts frommodel

skill after one week.

This study builds upon Janiga et al. (2018) by exam-

ining CFSv2 skill during all seasons using the ensemble

mean. We also examine variations in skill between re-

gions and byMJOphase.While CFSv2 generally had the

lowest skill in their study, it remains the model that is

most accessible to forecasters at NOAA/CPC and else-

where. A thorough understanding of its strengths and

weaknesses can therefore be useful to those forecasters.

To that end, we also focus on Heidke skill score (HSS)

for verification, since that is the preferredmetric at CPC.

The reference used to evaluate the skill of the filtered

forecasts is unfiltered anomalies since this also provides

information on the contribution of different filters to the

total variability.

2. Data and methods

a. Data

This study examines CFSv2 skill for rainfall 1999–

2010. The model forecasts are initialized every 6 h and

output at 6-hourly timesteps out to at least 45 days (Saha

et al. 2010). For this study, the 6-hourly timesteps were

averaged to create daily forecasts, and the four initiali-

zations each day were averaged to create a four-member

ensemble mean. About 2% of the daily ensembles were

omitted because of missing or corrupted data. Model

climatology and biases were removed by subtracting the

1999–2010 CFSv2 reforecast calibration climatologies.

The CFSv2 was verified against TRMM multisatellite

precipitation analyses (TMPA, TRMM3b42; Huffman

et al. 2007). The verification was performed on the

tropical strip 208S–208N. The TRMM data were aver-

aged from 3-hourly to daily, and both the TRMM and

CFSv2 datasets were regridded to the same 1.258
latitude–longitude grid. Anomalies were calculated by

subtracting the first three harmonics of the annual cycle

for 1998–2015.

b. Filtering methods

The Fourier filtering methodology closely follows

that from Janiga et al. (2018). Figure 1 shows an ex-

ample of the filtering method. The reference filtering

(Fig. 1a) applies the filters to the entire TRMM dataset

(1998–2015) as is typically done in observational studies

(Kiladis et al. 2005, 2009). The observational padding

(Fig. 1b) uses 411 days of TRMM observations followed

by 655 days of zero anomalies (climatology). This ar-

rangement is similar to the method from Wheeler and

Weickmann (2001). They found that the filter has very

little sensitivity to the lengths of each segment of the

data. One difference is that here the observed anomalies

are used for an additional 45 days to emulate a perfect

forecast. This method illustrates the contribution of

each filter to the observed variability and the potential

utility of eachmode for forecasting rainfall. It also shows

the sensitivity of the filters to the padding. Differences in

the filtered contours between the reference filtering

(Fig. 1a) and the observational padding (Fig. 1b)

become evident after 13 December (28 days) in this

example as the filter increasing responds to the cli-

matological padding.
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The primary focus of this study is on the CFSv2 fil-

tering (Fig. 1c). In this case, the filtering is applied to an

array that contains 366 days of TRMM observations

followed by 45 days of CFSv2 forecasts and 655 days of

zero anomalies (climatology). The differences between

the CFSv2 forecasts and the observed rainfall anomalies

affects the filtered anomalies even before the initializa-

tion date (see differences between the contours in

Figs. 1b and 1c during 1–15 November). However, these

differences are small and decrease to zero around a

week before forecast initialization [Fig. 3 of Janiga et al.

(2018)] but this study will only examine the filtered

anomalies during the forecast period (15 November to

30 December in this example). Both the observational

and CFSv2 paddings are repeated for each day during

1999–2010.

Based on the results of Janiga et al. (2018), this study

focuses primarily on three filter bands: low-frequency/large-

scale (LF, wavenumber k 5 210:10, p . 120 days), the

MJO [k 5 0:9, p 5 20–100 days, following Kiladis et al.

(2005)], and ER waves [k 5 210:21, p 5 10–72 days,

h , 90m, following Kiladis et al. (2009)] where k is the

zonal wavenumber, p is period, and h is the shallow

water equivalent depth. We will also briefly compare

two Kelvin wave filters: one from Kiladis et al. (2009)

that is based on the shallowwater dispersion lines (k5 1:

14, p 5 2.5:30 days, h 5 8:90m) and a broader rectan-

gular filter (k5 1:14, p5 2.5:20 days) (Janiga et al. 2018;

Roundy 2012a).

Following Janiga et al. (2018), the LF-filtered anom-

alies are subtracted from the nonzero portion of the data

beforefiltering for theMJOandERwaves. Subsequently, a

20-day low-pass filter is subtracted from the nonzero data

before filtering for the Kelvin waves. These steps reduce

some of the spectral ringing that can occur at the interface

between the zeros and nonzeros.

c. Heidke skill scores (HSS)

One of the primary components of CPC’s Global

Tropical Hazards and Benefits Outlook is forecasts for

above and below average precipitation as defined by

tercile categories. The Heidke skill score (HSS) is an

ideal metric for verifying such forecasts (O’Lenic et al.

2008; Sooraj et al. 2012; Peng et al. 2013). HSS provides

FIG. 1. Hovmöllers of a sample forecast initialized on 15 Nov 2002. Shading indicates unfiltered rainfall anomalies and contours identify

LF (magenta), MJO (black), ER-wave (red), and Kelvin wave (blue) filtered anomalies. These filters are applied to three sets of data:

(a) the entire TRMM observational record (1998–2015); (b) observed TRMM anomalies until 30 Dec 2002 (lower horizontal line) and

climatology (zero anomalies) thereafter; and (c) observed TRMM anomalies until 15 Nov 2002 (upper horizontal line), CFSv2 forecasts

for 15 Nov to 30 Dec 2002, and climatology (zero anomalies) thereafter. The reference filtering in (a) is shown only for reference. The

observational padding in (b) is used in Figs. 2–4, and the CFSv2 padding in (c) is used for all other figures.
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the percentage of forecasts that match the observed

category relative to what might occur just by chance. It is

defined as

HSS5 1003
H2E

T2E
,

whereH is the number of correct forecasts (hits),E is the

expected number of correct forecasts by chance, andT is

the total number of forecast–observation pairs. For

tercile forecasts,E5T/3. A perfect forecast would score

100 while a forecast worse than random chance would

score ,0. All HSS calculations use daily initializations

of the forecasts from 1999 to 2010.

In this study, terciles are calculated separately for the

TRMM observations, the unfiltered CFSv2 forecasts,

and for each filter band. They are calculated at each grid

point and for each calendar month using data from all

years (1999–2010). The forecast terciles are also calcu-

lated for each lead. Both filtered and unfiltered forecasts

are thus compared to their own terciles to determine the

forecast tercile, which is then verified against the ob-

served unfiltered TRMM tercile.

Statistical significance of the HSS results is evaluated

using the cumulative density function for a binomial

distribution (Wilks 2006, p. 74). The effective sample size

was evaluated following [Wilks 2006, 144–145, Eq. (5.12)]:

n0 ffi n
12 r

1

11 r
1

,

where n0 is the effective sample size, n is the number of

forecasts being verified, and r1 is the lag-1 autocorrela-

tion coefficient of the unfiltered TRMM rainfall obser-

vations at a given point. The cumulative density function

is then used to estimate howmany hits would occur from

random chance (33% for tercile forecasts) at the 95%

level. TheHSS95 is then calculated based on this number

of hits and effective sample size. The actual HSS is con-

sidered statistically significant if it is greater than HSS95.

A similar method is used to evaluate the statistical

significance of the difference in HSS between two sets of

forecasts. The cumulative density function is used to

calculate the 95% range of HSS for each set of forecasts

given their hit rates (H/n) and the effective sample n0.
The difference is considered statistically significant if

either actual HSS falls outside of the 95% range of HSS

for the other.

3. Results

Figure 2 shows the HSS between observational pad-

ding filtered TRMM rainfall anomalies and the unfil-

tered anomalies at week 3. Verifying observed filtered

anomalies against unfiltered ones illustrates the contri-

bution of each filter to the observed variability and the

potential utility of each mode for forecasting rainfall.

The results are only nominally sensitive to lead through

week 3, but thereafter the filters begin to lose skill as

they are affected more by the beginning of the zero

padding (cf. Figs. 1a,b).

The LF filter (Fig. 2a) explains the largest amount of

variability over the western Pacific where ENSO-related

SST anomalies strongly control the rainfall. Meanwhile,

the MJO’s impact (Fig. 2b) is largest over the Indian

Ocean and to a lesser degree the Maritime Continent.

The variability associated with ER waves (Fig. 2c) is

comparable to that of the MJO over most of the tropics.

The primary exceptions are that ER-wave variability is

somewhat weaker than theMJO over the Indian Ocean,

and it is virtually absent over the Maritime Continent.

The MJO and ER waves explain little of the rainfall

variability over the equatorial Pacific, even though they

have large variance there (Kiladis et al. 2005, 2009). This

difference illustrates one of the key limitations in using

subseasonal modes alone to predict rainfall. Bandpass-

filtered anomalies are required to sum to zero over one

full wavelength and/or period. Positive anomalies must

be coupled with subsequent negative anomalies and vice

versa. This becomes problematic when there are strong

LF anomalies. For example, the forecast in Fig. 1 is

taken from the strong El Niño during 2002/03. That El

Niño favored positive rainfall anomalies near the date

line (solidmagenta contours). The dry phase of theMJO

in late December (dashed black contours) reduces those

positive anomalies (green shading) but produces hardly

any dry anomalies (brown shading). As a result, verify-

ing the MJO-filtered anomalies alone against the unfil-

tered anomalies would find little skill.

Figures 2d and 2e show the HSS for the sum of the

LF and MJO (LF1MJO), as well as the ER waves

(LF1MJO1ER). The skill increases with the addition

of each mode. Those increases are further quantified in

Fig. 3 by comparing the HSS with and without each sum.

The improvements to skill from adding the MJO to the

LF (Fig. 3a) largely align with the regions where the

MJO filter produces skill on its own (Fig. 2b). Adding

the MJO detracts from skill over the equatorial and

Southeast Pacific, but those decreases are not statisti-

cally significant (gray shading, see section 2c). Adding

ER-filtered anomalies improves skill (Fig. 3b), but those

improvements over LF1MJO alone are fairly modest

(Fig. 3c). Most of those improvements occur in regions

where tropical cyclone activity commonly projects onto

theERfilter band (Schreck et al. 2012;Aiyyer et al. 2012).

Kelvin waves are another potential source of sub-

seasonal skill. Their lifespans often extend into the
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subseasonal scale (Straub et al. 2006), and they may exist

on a continuumwith theMJO (Roundy 2012b,c; Sobel and

Kim 2012). They are often identified with a fairly narrow

filter band bounded by the shallowwater dispersion curves

for equivalent depths of 8 and 90m (Wheeler and Kiladis

1999; Kiladis et al. 2009). Although this filter captures

largest spectral peak, it misses many other eastward

propagating systems that share Kelvin characteristics, so

FIG. 3. Differences in HSS for various combinations of filtered rainfall anomalies verified

against unfiltered rainfall anomalies. Gray shading denotes areas where that difference is not

significantly different from zero (see section 2c for details).

FIG. 2. HSS between observed filtered rainfall anomalies and observed unfiltered rainfall

anomalies for times corresponding to week 3 forecasts for (a) LF, (b)MJO, (c) ER-wave filters,

(d) sumof LF andMJOfiltered anomalies, and (e) sumof LF,MJO, andER-filtered anomalies.

Gray shading denotes areas where HSS is not significantly different from zero (see section 2c

for details). Boxes outline primary regions of skill that will be examined in Figs. 7–9. Fromwest

to east, they are the Indian Ocean, Maritime Continent, western Pacific, and Atlantic.
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broader rectangular filters are also often used (Roundy

2012a; Janiga et al. 2018). The size of the filter comes with

trade-offs. A narrow filter can extrapolate the existing

signals farther (Wheeler and Weickmann 2001), but it

naturally reduces the variance within the filter. A

broader filter, on the other hand, can more faithfully

approximate the unfiltered anomalies, but it also de-

pends more strongly on the skill of the underlying

model forecast data.

Figure 4 illustrates the amount of the total rainfall

variability explained by these types of filters. The nar-

rower Kiladis et al. (2009) filter only explains a small

portion of the variability when averaged over weekly

periods (Fig. 4a), which makes sense because the filter is

particularly narrow at longer periods. The wider filter

explains more of the variability of weekly averaged

rainfall (Fig. 4b), although still less than the other filter

bands (Fig. 2). For 3-day windows the narrow Kelvin

filter explains more of the rainfall variability (Fig. 4c),

but still not as much as the wider Kelvin filter (Fig. 4d).

We will not consider Kelvin waves further in this study

because of their small potential skill and the fact that the

CFSv2 underrepresents these waves (Goswami et al.

2017; Janiga et al. 2018). However, future studies should

continue to investigate ways to harness subseasonal skill

from these waves.

Figure 5 shows the week-3 HSS scores for the CFSv2.

The unfiltered CFSv2 rainfall anomalies (Fig. 5a) show

skillful forecasts across most of the tropical ITCZ.

The strongest skill is in the Pacific, particularly near the

date line. The skill for the LF-filtered CFSv2 anomalies

(Fig. 5b) is very similar, aside from reduced skill over the

Indian Ocean. This similarity suggests that the CFSv2

derives most of its week-3 skill from essentially persis-

tent features. The patterns are also very similar between

the LF-filtered CFSv2 and the LF-filtered observations

(Fig. 2a), albeit with the CFSv2 naturally having some-

what lower and more localized skill.

The LF CFSv2 skill (Fig. 5b) is actually larger than

that of the unfiltered model output (Fig. 5a) over the

equatorial Pacific. This difference implies that the

model’s higher-frequency (,120 days) variability is de-

tracting from the skill in the equatorial Pacific. In ad-

dition, this is only week 3, so the Pacific SSTs will still be

close to their initial conditions. The LF skill is not im-

plying that the model is necessarily simulating the evo-

lution of ENSO. Instead, it shows that the model is

accurately representing the response to the preexisting

ENSO conditions.

The MJO-filtered CFSv2 is only significantly skillful

(see section 2c for details of the significance testing) over

the Indian Ocean and a small region off the northern

coast of Papua New Guinea (Fig. 5c). These are the

regions of greatest potential skill (Fig. 2b), but many

regions of opportunity are missed, notably the South

China Sea, the eastern North Pacific, and Brazil.

Meanwhile, the ER-filtered forecasts (Fig. 5d) are not

significantly skillful anywhere.

FIG. 4. As in Fig. 2, but for Kelvin waves using either (a),(c) a narrow filter fromKiladis et al.

(2009) or (b),(d) a broader rectangular filter from Janiga et al. (2018) and either averaging over

(a),(b) 7 days or (c),(d) 3 days.
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Despite the lack of skill from the MJO and ER filters

alone (Figs. 5c,d), they still contribute to CFSv2’s

overall skill. Adding the MJO-filtered anomalies to the

LF anomalies (LF1MJO, Fig. 5e) increases the skill

over the Indian Ocean above using the LF alone

(Fig. 5b). Over the equatorial Pacific, however, the skill

is actually decreased somewhat, consistent with obser-

vations (Fig. 3a). Adding ER waves (LF1MJO1ER,

Fig. 5f) slightly increases the skill over the Indian Ocean

and further degrades it over the Pacific.

Figure 6 shows the number of days until the HSS for a

7-day running mean forecast is no longer significantly

different from zero. Over the central Pacific, the entire

unfiltered 45-day CFSv2 forecast (Fig. 6a) is skillful, as

42 days in Fig. 6 refers to the 7-day running mean for

days 39–45. Over most of the tropics, the model is gen-

erally skillful out to 14–21 days, with many subregions

showing skill to 21–28 days. Africa is a notable exception

where the CFSv2 is barely skillful beyond the first week

near the Sahel, Zaire, and Angola.

As in Fig. 5, much of the CFSv2’s skill is derived from

the LF signal (Fig. 6b), particularly in the equatorial

Pacific and the seas within the Maritime Continent.

The LF filter alone gives skillful rainfall forecasts out

beyond five weeks in these regions. LF skill over the

Indian Ocean is more limited, barely into 2–3 weeks.

Adding the MJO-filtered anomalies (Fig. 6c) extends

the IndianOcean skill into week 4, comparable and even

slightly better than the unfiltered CFSv2 (Fig. 6a). The

MJO-filtered anomalies also extend the skill over Brazil

into week 3, although the unfiltered forecasts still retain

better skill there. Adding ER-filtered anomalies has a

minimal impact on the skill horizon (Fig. 6d).

Figure 7 shows the skill by lead for several regions.

Over the entire tropical strip (dashed lines in all panels),

the HSS asymptotes to around 6 for the unfiltered

forecasts and around 4 for each set of filtered anomalies.

The LF filter (red lines) provides the largest proportion

of the skill. Including the MJO (blue lines) primarily

increases the skill in the first three weeks. ER waves

provide some added skill, particularly during the first

two weeks. The unfiltered anomalies (black lines) re-

main the most skillful. The difference between the fil-

tered and unfiltered skill decreases until around week 3,

which is also the limit of the added skill from adding the

MJO filter (blue lines). It suggests that the MJO and LF

FIG. 5. As in Fig. 2, but for (a) unfiltered and (b)–(f) filtered CFSv2 forecasts.
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variability are the primary driving forces of skill during

these three weeks. The unfiltered anomalies probably

provide smaller-scale structures associated with these

modes that get lost in the filtering. That would explain

the higher initial skill of the unfiltered anomalies, but

also why that skill diminishes on the same scale as that of

the MJO.

The relative contributions of each mode changes be-

tween the regions shown in Fig. 7. Not surprisingly, the

MJO’s impact is greatest over the Indian Ocean

(Fig. 7a). Adding the MJO to the LF anomalies nearly

doubles the skill in the first two weeks. The unfiltered

skill actually falls below that of the LF1MJO in week 3

and beyond. Over the Maritime Continent (Fig. 7b), the

skill for LF is about 50% higher over than the entire

tropics. However, the MJO also provides added skill

through week 3. The skill over the western Pacific

(Fig. 7c) is driven largely by the LF signal associated

with ENSO. The skill for LF alone in the western Pacific

is larger than for any other filter in any of the regions. All

of the other filters, including the unfiltered forecasts,

degrade the skill after week 2. The Atlantic (Fig. 7d), on

the other hand, more closely resembles the tropics at

large (dashed lines), albeit with slightly higher skill for

all filters.

Figure 8 shows the differences in skill between the

LF1MJOand LF alone subdivided by lead time, season,

region, and RMM phase and amplitude. Large dots

denote statistically significant differences (see section 2c

for details). The season and RMM are for the day of

initialization, and the RMMphase is only considered for

days when the RMM amplitude is .1. For the entire

tropical strip (top row), adding the MJO generally pro-

vides some skill over and above the LF alone (red dots).

The improvement is greatest in week 1 and also during

March–May. The MJO’s impact does not vary much

with RMM phase, although it is a little higher when the

MJO is in the Indian Ocean to Maritime Continent

(phases 3–5). The MJO actually detracts from skill

during June–August in phases 2–5. This is consistent

with the relatively poor performance of the CFSv2 in

simulating the MJO during boreal summer compared to

other S2S models (Jie et al. 2017).

The MJO contributions to skill are also divided by

RMM amplitude without regard to phase. The ampli-

tudes were roughly divided into terciles by considering

days when they were ,0.9 (weak), 0.9–1.5 (moderate),

and$1.5 (strong). As expected, theMJO provides more

added skill when the RMM is strong and less when it

is weak.

Consistent with Figs. 5e and 7a, the MJO provides

its largest improvement to skill over the Indian Ocean

(Fig. 8, second row). The improvements are largest

duringMarch–May and September–November, where

the MJO can improve skill out to week 4. Meanwhile

the MJO nominally diminishes the skill over the Indian

FIG. 6. Number of forecast days until the HSS for 7-day forecast mean is no longer sta-

tistically different from zero at the 95% level for (a) unfiltered CFSv2 forecasts and forecasts

filtered for (b) LF, (c) LF1MJO, and (d) LF1MJO1ER filtered anomalies. Days shown are

the centers of the 7-day window (e.g., day 7 corresponds to the forecast for days 4–10).
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Ocean during June–August for phases 1–4. TheMaritime

Continent (Fig. 8, third row) sees its biggest improve-

ments to skill from the MJO during March–May as well,

primarily in phases 3–5. The signals are more mixed in

other seasons, with September–November having the

largest deductions in skill. The Indian Ocean and the

Maritime Continent are also the regions where the re-

lationship between RMM amplitude and MJO skill is

clearest.

The MJO generally does not contribute to skill im-

provements over the western Pacific or the Atlantic

(Fig. 8, bottom two rows). After week 1, many phases

and seasons shows decreases in skill over both regions.

Over the western Pacific, theMJO is most skillful during

June–August and least skillful during September–

November. These patterns make sense considering

the seasonal cycle of ENSO amplitude (Arguez et al.

2019). ENSO is weakest during boreal summer, so the

MJO can play a greater role in rainfall variability.

Conversely, ENSO is strongest during boreal fall and

winter, which makes it harder for theMJO to contribute

to the skill. Over the Atlantic, the MJO produces its

largest improvements to skill during March–May. The

MJO somewhat improves skill over the Atlantic during

September–November, which is a period when theMJO

strongly modulates Atlantic tropical cyclone activity

(Mo 2000; Klotzbach 2010). Meanwhile, the MJO is the

least skillful during December–February.

Figure 9 repeats the analysis for the contribution of

ER-filtered anomalies to skill beyond that of LF1MJO.

ER waves rarely provide additional skill beyond week 1.

ER waves provide the largest additional skill during

FIG. 7. Heidke skill scores by lead for 7-day running mean forecasts for each of the four regions highlighted by the

blue boxes in Figs. 2–6. Dashed lines show the corresponding skill for the entire tropical strip.
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December–February, particularly over the Indian

Ocean, which is a peak time and location for ER wave

activity (Roundy and Frank 2004). Perhaps more sur-

prising is that ER waves also contribute skill over

the Atlantic during all seasons except for June–August

(bottom row). One possible reason for this is that LF and

MJO activity are relatively weak over the Atlantic. In

addition, ERwaves share propagation characteristics with

tropical cyclones (Schreck et al. 2011, 2012; Aiyyer et al.

2012). These tropical cyclones are themselves modulated

by the MJO, so the enhanced skill during September–

Novembermay reflect skillful forecasts of tropical cyclone

activity (Barnston et al. 2015). However, the regional

analyses only include 108S–108N, which would be south of

most tropical cyclones. ER waves also do not provide

similar skill in other basins with larger tropical cyclone

activity like the Maritime Continent (middle row).

ER waves also contribute skill in the Atlantic during

December–May. They are generally weaker during that

time and region, but they are more equatorially confined.

4. Summary and discussion

This study employs a novel Fourier filtering method

(Schreck 2013; Janiga et al. 2018) to identify the

contributions of four subseasonal tropical modes to the

CFSv2’s skill at predicting rainfall. The initial hypothesis

was that the model would be able to predict these en-

velopes more skillfully than the smaller-scale features

that dominate unfiltered rainfall (Tapiador et al. 2019).

As in Janiga et al. (2018), this hypothesis was disproven

because the filtered skill rarely exceeds that of the un-

filtered model forecasts. Even so, the Fourier filtering

has two clear uses:

1) It is a convenient way to identify sources of skill

within the model.

2) It can focus the forecaster’s attention on the compo-

nents with the most skill.

In the case of the latter, it allows for straightforward

forecast attribution, which enables the forecaster to

better communicate both the forecast and associated

uncertainty to stakeholders.

The CFSv2 derives most of its skill for week 2 and be-

yond from simply persisting low-frequency (LF) signals

that respond to SST anomalies like ENSO. Comparing

the skill of a perfect forecast (Fig. 2a) with the CFSv2

(Fig. 5b) shows that the model harnesses much of the LF

potential skill within the oceanic ITCZs. Based on the

results of this study, forecasters should place the most

FIG. 8. Difference between HSS for LF1MJO and LF for each region (rows), season (columns), forecast lead, and RMM phase. Red

dots indicate that LF1MJO is more skillful, while blue dots show that LF is more skillful. Large dots denote differences that are 95%

statistically different from zero. RMM phases are used only when the RMM amplitude is.1; W indicates weakMJO (RMM, 0.9), M is

moderate MJO (0.9 # RMM , 1.5), S is strong MJO (RMM $ 1.5), and A is for all dates regardless of RMM phase or amplitude.
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weight on LF signals from the CFSv2. The MJO can

provide additional skill in particular situations. It is gen-

erally most skillful over the Indian Ocean and to a lesser

degree the Maritime Continent. The MJO signals are

generally most reliable during March–May and particu-

larly when the RMM is higher amplitude and in phases 2–

5. Meanwhile, the MJO signals should be treated more

cautiously during June–August and also over the western

Pacific and Atlantic. ER wave signals are generally most

skillful during week 1 in December–February and over

the Indian Ocean. They are also particularly useful over

the Atlantic during September–November.

Most previous studies of model skill for theMJO have

focused on the bivariate correlation with the RMM

(Gottschalck et al. 2010). For example, Vitart and

Molteni (2010) show that the ECMWF can predict the

RMM (correlation . 0.5) out to ;20 days. Similarly,

Kim et al. (2014) found skill in the VarEPS out to

27 days and the CFSv2 to 21 days. In contrast, this study

shows that the week-3 skill from MJO-filtered rainfall is

limited to Indian Ocean and to a lesser degree the

Maritime Continent. Why are the models so much less

skillful in our study? The Fourier filtering in our method

smooths both the forecasts and observations in time and

longitude, but that seems more likely to improve the

apparent skill than detract from it. The more likely ex-

planation is that the RMM is a global index and one that

is heavily biased toward the circulation component of

theMJO (Straub 2013). Zonal winds are much smoother

in both time and space and thus presumably more pre-

dictable than rainfall. Indeed, Janiga et al. (2018) found

that models produce substantially better week-3 fore-

casts for the MJO-filtered zonal winds at 850 and

200 hPa than for OLR. These results should inform fu-

ture studies that examine model skill for the MJO. Skill

scores derived from theRMMalonemay hide important

model deficiencies in the convection. Comparing Figs. 2

and 5 give some indication of how much room there is

for improvement in the rainfall signals associated with

the MJO and ER waves in particular. Additionally,

future studies should assess the potential of hybrid

statistical-dynamical forecast systems that might over-

come model shortcomings in forecasting convection.

This study also highlights regions where the MJO and

equatorial waves can or cannot contribute to improved

subseasonal forecast skill. Using filtered observational

data, Fig. 3a suggests that MJO-filtered rainfall anom-

alies improve the HSS primarily only over the Indian

Ocean and the seas around the Maritime Continent.

Over the equatorial Pacific, the rainfall anomalies are so

strongly modulated by ENSO-related SST variability

that the MJO and equatorial waves have little impact

there. The CFSv2 largely harnesses the skill associated

with these LF signals, but there remains more room for

FIG. 9. As in Fig. 8, but for the difference between LF1MJO1ER and LF1MJO.
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improvement in its prediction of MJO-related rainfall

(cf. Figs. 2d and 5e). The CFSv2’s MJO rainfall skill is

particularly lacking over the SPCZ and South America.

Kelvin waves remain an interesting challenge for sub-

seasonal dynamics and forecasting. They are synoptic-

scale features that are generally identified with narrow

filter bands. As a result, they provide only limited po-

tential skill for rainfall. However, individual waves can

have impacts and lifespans within the subseasonal scale

(Straub et al. 2006). Many of these impacts occur with

periods longer than the waves themselves, owing in part

to their complex relationship with the MJO. For example,

many MJO events can produce subseasonal shifts in con-

vection or circulation that are punctuated by individual

Kelvin waves (Schreck and Molinari 2011; Schreck 2015).

The distinctions between Kelvin waves and the MJO

also may not be as clear as previously thought. MJO

events can transition to more Kelvin-like signatures

as they propagate across the Western Hemisphere

(Hendon and Liebmann 1994; Straub and Kiladis 2003;

Sobel and Kim 2012). The MJO and Kelvin waves also

exist on a continuum with some events having hybrid

characteristics both in terms of scale and structure

(Roundy 2012b,c, 2014). Models with more robust

Kelvin waves also tend to have better MJOs (Guo et al.

2015), but model evaluation studies, including the

present one, have yet to develop metrics for evaluating

theMJO–Kelvin wave continuum. Better evaluation of

that continuum may lead to critical improvements in

simulating tropical convection.

Finally, this study only evaluated the ensemble mean

of the CFSv2. Janiga et al. (2018) performed similar

analysis for two other models, but these methods could

easily be applied to the full host of subseasonal models

to determine the strengths and weaknesses of different

models and guide improvements to model physics.
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